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The electron-phonon coupling in potassium-doped graphene on Ir�111� is studied via the renormalization of
the �� band near the Fermi level, using angle-resolved photoemission spectroscopy. The renormalization is
found to be fairly weak and almost isotropic, with a mass enhancement parameter of �=0.28�6� for both the

K̄−M̄ and the K̄− �̄ direction. These results are found to agree well with recent first-principles calculations.
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Many-body effects in graphene have recently attracted
considerable attention, mainly because of graphene’s per-
ceived role as a future electronics material, but also because
graphene is highly suited as a fundamental test case for the
investigation of many-body effects.1–9 In particular, the
structural and electronic simplicity of graphene seems to im-
ply that it is accessible to both first-principles calculations
and angle-resolved photoemission �ARPES�. Other advan-
tages are that high-quality graphene can be prepared and
doped by an electric field or by adsorption.

This Rapid Communication is concerned with the
electron-phonon interaction in electron-doped graphene. De-
spite the above-mentioned apparent advantages of graphene
to study many-body interactions, there has been considerable
dispute on the strength of the electron-phonon coupling in
both experimental and theoretical studies. From the experi-
mental side, there are several possible causes for this. First of
all, experiments have not been performed on free-standing
graphene and it is not easy to evaluate the role of the sub-
strate. More importantly, determining the electron-phonon
self-energy from the dispersion’s renormalization is not
simple, after all, since the unrenormalized �bare� dispersion
is also influenced by many-body effects at higher energies.1,2

The usual approach of using a linear bare dispersion fails for
graphene,3 a fact which has lead to unrealistic results in early
studies.4 Temperature-dependent studies, usually a stable al-
ternative to determine the coupling strength in the form of
the electron-phonon mass enhancement parameter �, are of
limited value because of graphene’s exceptionally high De-
bye temperature. At this point, rather different experimental
results for the size of � and its variation over the Fermi
surface have been reported for graphene and graphite inter-
calation compounds.4,5,10,11

Theoretical results generally point toward a rather weak
coupling but the absolute values of � vary greatly between
different calculations.3,12 Moreover, it has been pointed out
that the local-density approximation might not be able to
predict the electron-phonon coupling correctly.8,9 On the
positive side, a very recent calculation of the expected line-
width in ARPES, including both electron-electron and
electron-phonon-scattering effects, gives good agreement
with experimental data for doped graphene on SiC, at least in

the K̄-M̄ direction for states near the Fermi energy �EF�.6
In this Rapid Communication, we analyze the electron-

phonon coupling strength for electron-doped graphene
grown on Ir�111�. This approach has the potential advantage
of starting with a graphene layer which is relatively well
decoupled from the substrate and only very weakly doped
when clean. We use a stable method to determine � despite
the unknown bare dispersion. We find a moderate � value
which varies little over the Fermi surface, a scenario that
agrees well with a recent theoretical prediction.3 We compare
our results to other works using graphene on SiC as a starting
material1,2,4 as well as the KC8 and CaC6 intercalation
compounds.10,11 In KC8, and probably also in CaC6, the
graphene sheets are effectively decoupled because of the in-
creased distance between them after alkali intercalation.13

Experiments were performed at the SGM3 beamline of
the ASTRID synchrotron radiation facility at Århus
University.14 The endstation is equipped with a 150 mm
hemispherical electron energy analyzer �Specs�. The data
were taken with a photon energy of 45 eV, and at a sample
temperature of 70 K. The total energy and k resolution
amounted to 28 meV and 0.01 Å−1, respectively.

The graphene film was prepared on Ir�111� using a stan-
dard recipe.15,16 The cleanness of the Ir substrate before
graphene formation was monitored using the 4f surface core
level shift, and the quality of the graphene film was checked
by means of low-energy electron diffraction �LEED� and
ARPES, which showed the characteristic minigaps close to

the K̄ point.15 Potassium was evaporated from a commercial
getter source �SAES�. The data reported here were taken in a
situation in which LEED showed a �2�2� superstructure.
This corresponds to the KC8 phase in an alkali-metal/
graphite intercalation compound. At this doping level, the
Dirac point is shifted to a binding energy of 1.29 eV and the
electron concentration is �1�1014 cm−2 or, equivalently,
the doping level is 0.054 extra electrons per graphene unit
cell.

An area of two-dimensional reciprocal space around K̄
was sampled and a resulting dispersion and the Fermi con-
tour are shown in Figs. 1�a� and 1�b�, respectively. Detailed

dispersions along the K̄-�̄ and K̄-M̄ directions were extracted
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and shown in Figs. 1�c� and 1�d�, respectively. The disper-
sion along the K̄-�̄ direction in Fig. 1�c� is a sum of four
parallel, closely spaced slices. Along K̄-M̄ only a single cut
has been used. Averaging over several parallel cuts in this
direction gives rise to broadening, as expected because of the
sharp corner of the Fermi surface in this direction. The dis-
persions along K̄-M̄ and K̄-�̄ both show a pronounced renor-
malization of the bands, as evident from the kink in the dis-
persions around a binding energy of �180 meV. The

apparent strength of the kink is greater in the K̄-M̄ direction

than in the K̄-�̄ direction. Qualitatively, these results are in
good agreement with previous findings in similar
systems.4,5,10,11

Due to the threefold symmetry of the Fermi surface, sev-
eral equivalent cuts can be made. For the following analysis
we have focused on the directions with the highest signal-to-
noise ratio and smallest contribution of the underlying Ir
surface states. The results from other directions are consis-
tent with the reported findings and have been used to esti-

mate the uncertainty of the obtained coupling strengths.
The detailed renormalized dispersions were extracted by

fitting Lorentzian lines with a linear background to the mo-
mentum distribution curves �MDCs�, i.e., to constant energy
profiles. The fits were of good quality even though, strictly
spoken, MDC cuts through the spectral function can only be
described by Lorentzian lines in the case of a linear disper-
sion. This procedure also gives the energy-dependent full
width at half maximum �FWHM� of the MDC peaks.

In the next step of the analysis, the self-energy � has to be
extracted from the data. � is a complex quantity and its real
and imaginary parts are related via a Kramers-Kronig trans-
formation. The measured spectral function contains informa-
tion about both the real part �� and the imaginary part �� of
the self-energy via the size of the renormalization and the
linewidth of the MDCs, respectively.17 Extracting �� from
the MDC width suffers from the problem that the width is
usually rather noisy and that, strictly, �� can only be deter-
mined in the case of a linear bare dispersion. Using the
renormalized dispersion to extract ��, on the other hand,
requires the knowledge of the bare dispersion. In the present
case, both restrictions pose formidable problems but several
approaches have been suggested in order to overcome them,
such as measuring the dispersion at high temperatures18 or
using a self-consistent procedure to extract �.19 We employ a
procedure which is similar to the latter approach.

In the first step of this analysis, a model for the measured
spectral function is calculated from initial guesses for the
bare dispersion and �. The bare dispersion is assumed to be
a second-order polynomial. � is calculated from an Eliash-
berg coupling function �2F���, consisting of the contribu-
tions of five Einstein oscillators with energies that are evenly
distributed over the energy range from 21 meV to
�max=190 meV. The oscillators, with energy �i and a cou-
pling strength value �i, have a width of 1 meV. From
�2F���, it is straightforward to calculate �� �and thus also
��� through

����� = ��
0

�max

�2F�����1 − f�� − ��� + f�� + ���

+ 2n�����d��, �1�

where n and f are Bose and Fermi functions, respectively.
Note that the simple, discrete character of the Eliashberg
function has only a minor effect on ��. Indeed, reasonable
fits of �� can sometimes be achieved with even simpler
models.10 Adding further Einstein oscillators in the present
case would render them redundant in view of the experimen-
tal energy resolution.

We add an offset to �� in order to account for energy-
independent defect scattering. As we are only concerned with
a small energy window close to EF, we ignore the effect of
electron-electron scattering altogether. The model thus con-
tains nine variable parameters: three governing the bare-
particle dispersion, five values of �i, and one offset for ��.
Using these, the spectral function can be calculated from the
bare dispersion and �. The result is multiplied with a Fermi
function and convoluted with the experimental energy and k
resolution functions.
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FIG. 1. Photoemission intensity around the K̄ point shown as
different cuts through a three-dimensional data set. �a� Large-scale

dispersion through K̄. �b� Fermi surface around K̄ with the dashed
line indicating the cut shown in �a�. More detailed Fermi energy

crossings along the K̄-�̄�c� and K̄-M̄�d� directions. �e� and �f� show
the simulated photoemission intensity corresponding to the data in
�c� and �d�, respectively.

BIANCHI et al. PHYSICAL REVIEW B 81, 041403�R� �2010�

RAPID COMMUNICATIONS

041403-2



In a second step, the MDC position and width are ex-
tracted from this simulated spectral function in the same way
as from the experiment. The MDC peak positions and widths
of experiment and simulation are compared using a com-
bined 	2 for position and width. The model parameters are
then optimized using a steepest-descent algorithm.

The results of this fitting procedure are given in Figs. 2
and 3. Figure 2 shows the agreement between data and simu-
lation as well as the bare dispersion obtained from the fit.
Figure 3 gives the resulting �. The level of agreement in Fig.
2 is clearly satisfactory given the simplicity of the model.
The self-energy obtained from the procedure reveals the ex-
pected contributions caused primarily by the high-energy op-
tical phonon modes and, less strongly, lower-lying modes,
consistent with the literature.4,5,10,11 The mass enhancement
parameter � can now be calculated as the first reciprocal
moment of �2F���. We find the same � value of 0.28�6� for

the K̄-M̄ and K̄-�̄ directions.

It is quite remarkable that the obtained � values are so
similar for the two directions despite of the apparently stron-
ger renormalization along K̄-M̄. The reason is the downward
curvature of the band in this direction as it approaches the
van Hove singularity, as noted earlier.3 This curvature also
leads to counterintuitive slight increase in the linewidth upon
approaching the Fermi level, best observed between 450 and
200 meV in Fig. 2�d� and also reported for similar
compounds.10 An energy dependence of the linewidth in re-
gions with a rapidly changing density of states is, of course,
expected and has been found for other systems.20 The simi-
larity of the � values can already be guessed from inspecting
�� alone. The absolute value of the two curves in Fig. 3 is
different but the increase in �� due to electron-phonon cou-
pling is very similar. Note that there is no a priori reason to
assume anisotropic � values. If the coupling to very low-
energy acoustic phonons �i.e., with q vectors significantly

shorter than the size of the K̄ Fermi contour� were relevant,

one could expect shorter lifetimes around the K̄-M̄ direction,
as more states with similar energy are close by. But as cou-
pling to high energy optical phonons is obviously dominant
and intervalley scattering is thought to be important for
electron-doped graphene,10,11 this simple argument does not
hold.

We note that the outlined approach for determining � and
� has several advantages over other methods. First of all, it
does not rely on any knowledge of the bare dispersion, as
long as it is locally parabolic. In the case of graphene, this is
crucial, because the strong nonlinearity in the bare dispersion
close to the van Hove singularity does not only upset a
simple determination of ��, it also makes it impossible to
relate the MDC linewidth to �� through the usual relation
that ��=v FWHM /2, where v is the group velocity of the
state and FWHM the MDC full width at half maximum. As

mentioned before, this effect is most pronounced along K̄-M̄.
The data analysis approach also has the advantage of

built-in consistency between �� and �� at the expense of
assuming particle-hole symmetry for the transformation from
�� to ��. Also, it permits sufficient variation in �, while
describing the system with a manageable number of param-
eters. Indeed, the idea of using an Eliashberg function con-
structed with a small number of Einstein oscillators is simple
and stable and one might wonder why it works so well. The
reason is that one does not fit the actual Eliashberg function
but �, or rather the observed dispersion, which contains only
a temperature-broadened integral over the �2F���. Details in
the latter become insignificant but the determination of the
coupling strength is stable. Finally, the procedure includes
the band distortion caused by the finite resolution of the
spectrometer. In particularly the energy resolution is well
known to distort the dispersion close to EF, leading to an
error in the band slope.18 For the determination of � this is
obviously very significant because for T=0, � is equal to the
slope of �� at EF.

We compare our results to � values obtained for graphene
and graphite with similar electron doping. For KC8 it has
been recently shown that the very intercalation of K atoms
also leads to an effective reduction of the system’s dimen-
sions from three to two, caused by the larger distance be-
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FIG. 2. �Color online� Detailed comparison between the mea-
sured spectral functions and those found in the iterative optimiza-
tion procedure outlined here. �a� and �c� peak position in MDC cuts
together with the bare dispersion obtained from the fit �dashed line�;
�b� and �d� peak full width at half maximum. Points with error bars
represent data, solid lines the fit.
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tween the graphene sheets, such that a direct comparison to
graphene is possible.11

The analysis of the electron-phonon coupling for electron-
doped graphene grown epitaxially on SiC has given rather
similar � values as reported here.1,2,4 An early study had
reported a rather large anisotropy, especially at even higher
doping levels, which was most probably caused by the unre-
alistic assumption of a linear bare dispersion.3 On KC8, on
the other hand, � was found to be rather anisotropic and also
stronger than here.11 The reason for this is unclear and could
lie in the different approach to data analysis or in the fact that
having K atoms in between graphene sheets leads to mark-
edly different phonon dispersion, even though the electronic
properties of the individual graphene sheets are similar to
free graphene. Our results agree well with a recent first-
principles calculations of the electron-phonon coupling in
electron-doped graphene3,6 which predicts an almost isotro-
pic electron-phonon coupling of similar strength.

Finally we compare the absolute MDC linewidth close to
the Fermi level to that in similar systems in order to assess
the role of defect scattering in this system. The linewidth
found here is roughly 0.095 Å−1 which is quite similar to
data from KC8 �Ref. 11� but significantly broader than for
alkali-doped graphene on SiC.1 It has to be noted, however,
that the graphene/SiC data in Ref. 1 have been taken at lower
doping levels and MDCs taken for the highest coverages
suggest that there is an increase in linewidth in this regime.
A plausible explanation for an increased linewidth for
graphene on Ir�111� is the fact that the resulting superstruc-
ture is incommensurate,21 implying a loss of translational

symmetry for the combined system and a presumably in-
creased scattering rate, even if the coupling between sub-
strate and graphene is small. We also note that the adsorption
of alkali metals on graphene/SiC and graphene/Ir�111� ap-
pears to be different. On SiC it is possible to continuously
vary the doping level whereas this cannot be done for
Ir�111�. Here the potassium adsorbates assemble in islands
with �2�2� periodicity and at lower coverages two � bands
are observed, one similar to the doped case reported here and
one similar to clean graphene on Ir�111�.22 Finally, it is ques-
tionable if a comparison of the coupling strengths and line-
widths for different doping levels is at all meaningful. Valla
et al. evoked a dynamical intervalley nesting effect to ex-
plain the observed coupling on CaC6 and this effect implies a
strong doping dependence of the coupling.10

In conclusion, we have determined the electron-phonon
coupling strength for a layer of alkali-doped graphene on

Ir�111� in the K̄-�̄ and K̄-M̄ directions. We find an almost
isotropic scattering strength consistent with recent first-
principles calculations. The approach used here takes the
nonlinearity of the bare dispersion and the finite experimen-
tal resolution into account and uses a simple model for the
Eliashberg function which allows a stable, reliable and self-
consistent analysis of the measured spectral function.
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